Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural and nanomechanical properties of InN films grown on Si(100) by femtosecond pulsed laser deposition

Identifieur interne : 000479 ( Main/Repository ); précédent : 000478; suivant : 000480

Structural and nanomechanical properties of InN films grown on Si(100) by femtosecond pulsed laser deposition

Auteurs : RBID : Pascal:13-0243511

Descripteurs français

English descriptors

Abstract

The structural and nanomechanical properties of InN films grown on Si(100) using femtosecond pulsed laser deposition were studied for different growth conditions. Atomic nitrogen was generated by either thermal cracking or laser-induced breakdown (LIB) of ammonia. Optical emission spectroscopy was conducted on the laser plasma and used to observe atomic nitrogen formation. An indium buffer layer was initially grown on the Si substrate at low temperature. The surface structure and morphology were investigated by in situ reflection high-energy electron diffraction, ex situ atomic force microscopy and x-ray diffraction (XRD). The results show that the initial buffer indium layers were terminated with the In(2 x 1) structure and had a smooth surface. With increased coverage, the growth mode developed from two-dimensional layers to three-dimensional islands. At room temperature (RT), formation of submicrometre islands resulted in mixed crystal structure of In and InN. As the substrate temperature was increased to 250-350 °C, the crystal structure was found to be dominated by fewer In and more InN, with only InN formed at 350 °C. The XRD patterns show that the grown InN films have wurtzite crystal structure. The film hardness near the surface was observed to increase from less than 1 GPa, characteristic of In for the sample grown at RT using the thermal cracker, to a hardness of 11 GPa at 30 nm from surface, characteristic of InN for samples grown at 350 °C by LIB. The hardness at deep indents reaches the hardness of the Si substrate of ∼12 GPa.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0243511

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Structural and nanomechanical properties of InN films grown on Si(100) by femtosecond pulsed laser deposition</title>
<author>
<name sortKey="Hafez, M A" uniqKey="Hafez M">M. A. Hafez</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>The Applied Research Center, Thomas Jefferson National Accelerator Facility</s1>
<s2>Newport News, VA 23606</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Newport News, VA 23606</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>National Institute of Laser Enhanced Sciences, Cairo University</s1>
<s2>Giza</s2>
<s3>EGY</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Égypte</country>
<wicri:noRegion>Giza</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mamun, M A" uniqKey="Mamun M">M. A. Mamun</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>The Applied Research Center, Thomas Jefferson National Accelerator Facility</s1>
<s2>Newport News, VA 23606</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Newport News, VA 23606</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Mechanical and Aerospace Engineering, Old Dominion University</s1>
<s2>Norfolk, VA 23529</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Norfolk, VA 23529</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Elmustafa, A A" uniqKey="Elmustafa A">A. A. Elmustafa</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>The Applied Research Center, Thomas Jefferson National Accelerator Facility</s1>
<s2>Newport News, VA 23606</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Newport News, VA 23606</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Mechanical and Aerospace Engineering, Old Dominion University</s1>
<s2>Norfolk, VA 23529</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Norfolk, VA 23529</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Elsayed Ali, H E" uniqKey="Elsayed Ali H">H. E. Elsayed-Ali</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>The Applied Research Center, Thomas Jefferson National Accelerator Facility</s1>
<s2>Newport News, VA 23606</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Newport News, VA 23606</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Electrical and Computer Engineering, Old Dominion University</s1>
<s2>Norfolk, VA 23529</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Norfolk, VA 23529</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0243511</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0243511 INIST</idno>
<idno type="RBID">Pascal:13-0243511</idno>
<idno type="wicri:Area/Main/Corpus">000A31</idno>
<idno type="wicri:Area/Main/Repository">000479</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-3727</idno>
<title level="j" type="abbreviated">J. phys., D. Appl. phys. : (Print)</title>
<title level="j" type="main">Journal of physics. D, Applied physics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atomic force microscopy</term>
<term>Buffer layer</term>
<term>Cracking</term>
<term>Indium</term>
<term>Indium nitride</term>
<term>LIBS</term>
<term>Laser radiation</term>
<term>Laser spectroscopy</term>
<term>Lithium boride</term>
<term>Optical spectrum</term>
<term>Pulsed laser deposition</term>
<term>RHEED</term>
<term>Radiation effects</term>
<term>Silicon</term>
<term>Substrat temperature</term>
<term>Surface morphology</term>
<term>Surface structure</term>
<term>Wurtzite structure</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Dépôt laser pulsé</term>
<term>Fissuration</term>
<term>Effet rayonnement</term>
<term>Rayonnement laser</term>
<term>Spectrométrie laser</term>
<term>Couche tampon</term>
<term>Température substrat</term>
<term>Structure surface</term>
<term>Morphologie surface</term>
<term>Spectre optique</term>
<term>Indium</term>
<term>RHEED</term>
<term>Microscopie force atomique</term>
<term>Nitrure d'indium</term>
<term>Borure de lithium</term>
<term>Structure wurtzite</term>
<term>Silicium</term>
<term>InN</term>
<term>Substrat silicium</term>
<term>In</term>
<term>Si</term>
<term>6860B</term>
<term>8115F</term>
<term>6835B</term>
<term>6166</term>
<term>6220Q</term>
<term>Spectrométrie LIBS</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The structural and nanomechanical properties of InN films grown on Si(100) using femtosecond pulsed laser deposition were studied for different growth conditions. Atomic nitrogen was generated by either thermal cracking or laser-induced breakdown (LIB) of ammonia. Optical emission spectroscopy was conducted on the laser plasma and used to observe atomic nitrogen formation. An indium buffer layer was initially grown on the Si substrate at low temperature. The surface structure and morphology were investigated by in situ reflection high-energy electron diffraction, ex situ atomic force microscopy and x-ray diffraction (XRD). The results show that the initial buffer indium layers were terminated with the In(2 x 1) structure and had a smooth surface. With increased coverage, the growth mode developed from two-dimensional layers to three-dimensional islands. At room temperature (RT), formation of submicrometre islands resulted in mixed crystal structure of In and InN. As the substrate temperature was increased to 250-350 °C, the crystal structure was found to be dominated by fewer In and more InN, with only InN formed at 350 °C. The XRD patterns show that the grown InN films have wurtzite crystal structure. The film hardness near the surface was observed to increase from less than 1 GPa, characteristic of In for the sample grown at RT using the thermal cracker, to a hardness of 11 GPa at 30 nm from surface, characteristic of InN for samples grown at 350 °C by LIB. The hardness at deep indents reaches the hardness of the Si substrate of ∼12 GPa.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-3727</s0>
</fA01>
<fA02 i1="01">
<s0>JPAPBE</s0>
</fA02>
<fA03 i2="1">
<s0>J. phys., D. Appl. phys. : (Print)</s0>
</fA03>
<fA05>
<s2>46</s2>
</fA05>
<fA06>
<s2>17</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Structural and nanomechanical properties of InN films grown on Si(100) by femtosecond pulsed laser deposition</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HAFEZ (M. A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MAMUN (M. A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ELMUSTAFA (A. A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ELSAYED-ALI (H. E.)</s1>
</fA11>
<fA14 i1="01">
<s1>The Applied Research Center, Thomas Jefferson National Accelerator Facility</s1>
<s2>Newport News, VA 23606</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Mechanical and Aerospace Engineering, Old Dominion University</s1>
<s2>Norfolk, VA 23529</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Electrical and Computer Engineering, Old Dominion University</s1>
<s2>Norfolk, VA 23529</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>National Institute of Laser Enhanced Sciences, Cairo University</s1>
<s2>Giza</s2>
<s3>EGY</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s2>175301.1-175301.8</s2>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>5841</s2>
<s5>354000173362080150</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>56 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0243511</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physics. D, Applied physics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The structural and nanomechanical properties of InN films grown on Si(100) using femtosecond pulsed laser deposition were studied for different growth conditions. Atomic nitrogen was generated by either thermal cracking or laser-induced breakdown (LIB) of ammonia. Optical emission spectroscopy was conducted on the laser plasma and used to observe atomic nitrogen formation. An indium buffer layer was initially grown on the Si substrate at low temperature. The surface structure and morphology were investigated by in situ reflection high-energy electron diffraction, ex situ atomic force microscopy and x-ray diffraction (XRD). The results show that the initial buffer indium layers were terminated with the In(2 x 1) structure and had a smooth surface. With increased coverage, the growth mode developed from two-dimensional layers to three-dimensional islands. At room temperature (RT), formation of submicrometre islands resulted in mixed crystal structure of In and InN. As the substrate temperature was increased to 250-350 °C, the crystal structure was found to be dominated by fewer In and more InN, with only InN formed at 350 °C. The XRD patterns show that the grown InN films have wurtzite crystal structure. The film hardness near the surface was observed to increase from less than 1 GPa, characteristic of In for the sample grown at RT using the thermal cracker, to a hardness of 11 GPa at 30 nm from surface, characteristic of InN for samples grown at 350 °C by LIB. The hardness at deep indents reaches the hardness of the Si substrate of ∼12 GPa.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15F</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60H35B</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60A66</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60B20Q</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Dépôt laser pulsé</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Pulsed laser deposition</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Fissuration</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Cracking</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Effet rayonnement</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Radiation effects</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Rayonnement laser</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Laser radiation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Spectrométrie laser</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Laser spectroscopy</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Couche tampon</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Buffer layer</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Capa tampón</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Température substrat</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Substrat temperature</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Temperatura substrato</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Structure surface</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Surface structure</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Morphologie surface</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Surface morphology</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Spectre optique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Optical spectrum</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Espectro óptico</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>RHEED</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>RHEED</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Borure de lithium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Lithium boride</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Litio boruro</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Structure wurtzite</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Wurtzite structure</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Estructura wurtzita</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>InN</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Substrat silicium</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>In</s0>
<s4>INC</s4>
<s5>54</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Si</s0>
<s4>INC</s4>
<s5>55</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>6860B</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8115F</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>6835B</s0>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>6166</s0>
<s4>INC</s4>
<s5>93</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>6220Q</s0>
<s4>INC</s4>
<s5>94</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Spectrométrie LIBS</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="27" i2="3" l="ENG">
<s0>LIBS</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>231</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000479 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000479 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0243511
   |texte=   Structural and nanomechanical properties of InN films grown on Si(100) by femtosecond pulsed laser deposition
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024